
\mathcal{A} ssignment

				Solid and Crystals	
1.	The manifestation of hand	l structure in solids is due to		[DCE 2000; AIEEE 2004]	
1.	(a) Heisenberg's uncertai		(b) Pauli's exclusion prin		
	(c) Bohr's correspondence		(d)	Boltzmann's law	
2.	For non-conductors, the e			1995; MP PET 1996; RPET 2003]	
2,	(a) 6 <i>eV</i>	(b) 1.1 eV	(c) 0.8 eV	(d) 0.3 <i>eV</i>	
3.		ion for forbidden energy gap			
3.	(a) $\Delta Eg_c > \Delta Eg_{sc} > \Delta Eg_{insulator}$		(b) $\Delta Eg_{insulator} > \Delta Eg_{sc} > \Delta Eg$		
	(c) $\Delta Eg_{conductor} > \Delta Eg_{insulator} >$	ΔEg_{sc}	(d) $\Delta Eg_{sc} > \Delta Eg_{conductor} > \Delta Eg$	ginsulator	
4.	The valence band and con	duction band of a solid overla	ap at low temperature, the s	olid may be	
	(a) A metal	(b) A semiconductor	(c) An insulator	(d) None of these	
5۰	The energy band gap is ma	aximum in			
	(a) Metals	(b) Superconductors	(c) Insulators	(d) Semiconductors	
6.	The band gap in Germaniı	ım and silicon in <i>eV</i> respectiv	vely is		
	(a) 0.7, 1.1	(b) 1.1, 0.7	(c) 1.1, 0	(d) 0, 1.1	
7.	•	e same resistance at ordina creases. We conclude that	ry (room) temperature. W	hen heated, resistance of P	
	(a) <i>P</i> and <i>Q</i> are conductor conductor	s of different materials	(b) <i>P</i> is <i>n</i> -type semi-cond	luctor and Q is p -type semi-	
	(c) <i>P</i> is semi-conductor a	nd Q is conductor	(d) <i>P</i> is conductor and <i>Q</i> is semiconductor		
8.	The nature of binding for	a crystal with alternate and e	evenly spaced positive and n	egative ions is	
	(a) Covalent	(b) Metallic	(c) Dipolar	(d) Ionic	
9.	If the distance between th	e conduction band and valen	ce band is 1 eV, then this cor	nbination is	
	(a) Metal	(b) Insulator	(c) Conductor	(d) Semiconductor s	
10.	For a crystal system, a = l	$p = c, \alpha = \beta = \gamma \neq 90^{\circ}$, the syst	em is		
	(a) Tetragonal system	(b) Cubic system	(c) Orthorhombic system	(d) Rhombohedral system	
11.	Which of the following sta	atements is wrong		[BHU 2000]	
		-			

	(a) A single representa crystal	ative unit spread out in who	le of the material in ord	lered regular arrays gives a single
	(b) A polycrystal is con maintained at grain		gular periodicity is broke	n inside the grains but regularity is
	(c) In an amorphous m	aterial each grain is compose	ed of a single representat	ive unit
	(d) In liquid crystals pe	eriodicity is maintained in on	ly one or two dimensions	5.
12.	Biaxial crystal among t	he following is		
	(a) Calcite	(b) Quartz	(c) Selenite	(d) Tourmaline
13.	The temperature coeffi	cient of resistance of a condu	ctor is	
	(a) Positive always	(b) Negative always	(c) Zero	(d) Infinite
14.	Potassium has a <i>bcc</i> str in <i>kg/m</i> ⁻³ is	ucture with nearest neighbou [DCE 1997]	ır distance 4.525 A. Its m	olecular weight is 39. Its density
	(a) 454	(b) 908	(c) 602	(d) 802
15.	At 0°K, fermi level for 1	metals		
	(a) Separate, empty an	d filled levels	(b)	Lies between filled levels
	(c) Lies between empty	y levels	(d)	Depends on metal
16.	Which of the following	statement is wrong		[MP PMT 1997]
	(a) Resistance of a sem	ni-conductor decreases on inc	reasing the temperature	
	(b) Displacement of ho	les is opposite to the displace	ement of electrons in an e	electric field
	(c) Resistance of a goo	d conductor decreases on inc	reasing the temperature	
	(d) N-type semiconduc	tors are neutral		

- **17.** The expected energy of the electrons at absolute zero is called
 - (a) Fermi energy (b) Emission energy (c) Work function (d) Potential energy
- 18. The energy band diagrams for three semiconductor samples of silicon are as shown. We can then assert that [Haryana

(a) Sample X is undoped while samples Y and Z have been doped with a third group and a fifth group impurity respectively

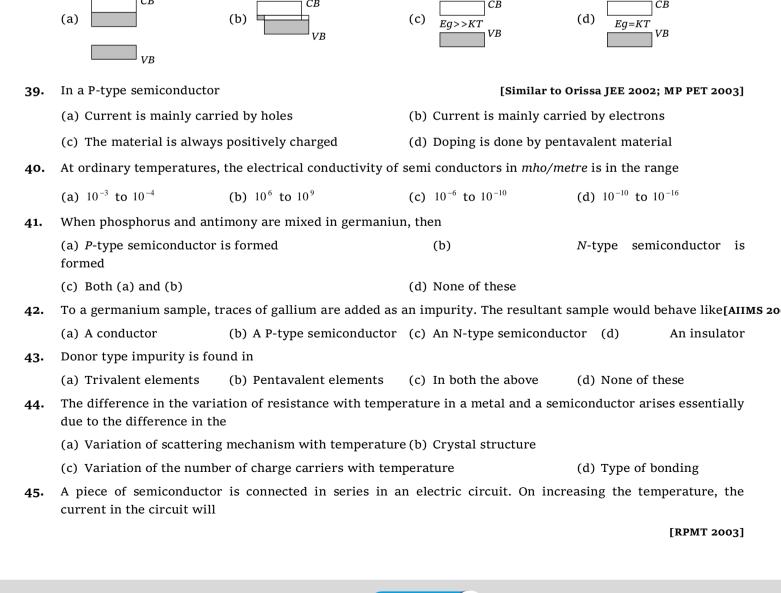
(b) Sample *X* is undoped while both samples *Y* and *Z* have been doped with a fifth group impurity

(c) Sample X has been doped with equal amounts of third and fifth group impurities while samples Y and Z are undoped

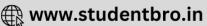
(d) Sample *X* is undoped while samples *Y* and *Z* have been doped with a fifth group and a third group impurity respectively

19. In good conductors of electricity, the type of bonding that exists is

(a) Ionic (b) Vander Waals (c) Covalent (d) Metallic



r www.studentbro.in


				nu and Semiconductor 149
20.	Bonding in a germanium	n crystal (semiconductor) is	[CPMT 1986; K	KCET 1992; EAMCET (Med.) 1995]
	(a) Metallic	(b) Ionic	(c) Vander Waal's type	(d) Covalent
21.	In a triclinic crystal syste	.em		[EAMCET (Med.) 1995]
	(a) $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma$	(b) $a=b=c$, $\alpha \neq \beta \neq \gamma$	(c) $a \neq b \neq c$, $\alpha \neq \beta = \gamma$	(d) $a=b\neq c$, $\alpha=\beta=\gamma$
22.	Metallic solids are alway	ys opaque because		[AFMC 1994]
	(a) Solids effect the incid			
		dily absorbed by the free elect	ron in a metal	
	(c) Incident light is scatt			
	(d) Energy band traps th	-		
23.	Forbiden energy gap in a	-		[EAMCET (Med.) 1994]
-	(a) 6 <i>eV</i>	(b) 1.1 <i>eV</i>	(c) 0.7 <i>eV</i>	(d) 0 eV
24.	In which of the following	g ionic bond is present	•••	[EAMCET (Med.) 1994]
	(a) NaCl	(b) <i>Ar</i>	(c) <i>Si</i>	(d) <i>Ge</i>
25.	Solid <i>CO</i> ₂ forms			[CBSE 1993]
	(a) Ionic bond	(b) Vander Waal bond	(c) Chemical bond	(d) Covalent bond
26.	Which of the following n	naterials is non crystalline		[CBSE 1993]
	(a) Copper	(b) Sodium chloride	(c) Wood	(d) Diamond
27.	The coordination number	r of <i>Cu</i> is		
	(a) 1	(b) 6	(c) 8	(d) 12
28.	Which one of the followi	ing is the weakest kind of bond	ding in solids	
	(a) Ionic	(b) Metallic	(c) Vander Waals	(d) Covalent
29.	In a crystal, the atoms a	re located at the position of		[AMU 1985]
	(a) Maximum potential e	energy (b)	Minimum potential energy	rgy (c) Zero potential energy(d)
30.	Crystal structure of NaCl	<i>l</i> is		
	(a) Fcc	(b) Bcc	(c) Both of the above	(d) None of the above
				Semiconductor
31.	A semiconductor is form	led by		
2	(a) Co-ordinate	(b) Covalent bonds	(c) Electro-valent bonds	s (d) Metallic bonds
32.	A hole carries a charge e			
-	(a) Zero	(b) Proton	(c) Neutron	(d) Electron
33.	A piece of copper and and	other of germanium are cooled	l from room temperature to '	77 K, the resistance of [MP PET 1
	(a) Each of them increas	ses	(b) Each of them decreas	ses
	(c) Copper decreases and	d germanium increases	(d) Copper increases and	d germanium decreases
34.	When germanium is dop	ed with phosphorus, the dope	d material has	
	(a) Excess positive charg		(b) Excess negative char	rae

150 Solid and Semiconductor (c) More negative current carriers (d) More carriers Partially filled electron between forbidden gap is 35. (d) All of the above (a) Conductor (b) Insulator (c) Semiconductor 36. The temperature (T) dependence of resistivity (ρ) of a semiconductor is represented by (b) \uparrow_P (c) \uparrow_P In extrinsic P and N-type, semiconductor materials, the ratio of the impurity atoms to the pure semiconductor 37. atoms is about (c) 10⁻⁴ **(b)** 10⁻¹ (d) 10^{-7} (a) 1 Which of the energy band diagrams shown in the figure corresponds to that of a semiconductor 38.

CLICK HERE

Get More Learning Materials Here :

positive

current

[Bihar CECE 2004]

[MP PET 2003]

			:	Solid and Semiconductor 151				
	(a) Decrease	(b) Remain unchanged	(c) Increase	(d) Stop flowing				
46.	When a semiconductor is	s heated, its resistance	[KCET	1992; MP PMT 1994; MP PET 2002				
	(a) Decreases	(b) Increases	(c) Remains unchange	ed (d) Nothing is definite				
47.	In a semiconductor, the semiconductor is	concentration of electrons	is $8 \times 10^{14} / cm^3$ and that	of the holes is $5 \times 10^{12} / cm^3$. The				
				1997; RPET 1999; Kerala PET 2002				
	(a) P-type	(b) N-type	(c) Intrinsic	(d) PNP-type				
48.		-		s are [EAMCET (Engg.) 1995; JIPME				
	(a) Equal	(b) Zero	(c) Unequal	(d) Infinite				
49 .	To obtain <i>P</i> -type <i>Si</i> semi-	conductor, we need to dope p	ure <i>Si</i> with					
	(a) Aluminium	(b) Phosphorous	(c) Oxygen	(d) Germanium				
50.	When the electrical con semiconductor is said to	•	r is due to the breaking	of its covalent bonds, then the				
			[AIIMS 1997	7; IIT-JEE 1997; KCET (Engg.) 2002				
	(a) Donar	(b) Acceptor	(c) Intrinsic	(d) Extrinsic				
51.	Which impurity is doped	in <i>Si</i> to form <i>N</i> -type semi-co	nductor					
	(a) <i>Al</i>	(b) <i>B</i>	(c) <i>As</i>	(d) None of these				
52.	In a semiconductor			[AIEEE 2002; AIIMS 2003				
	(a) There are no free electrons at any temperature							
	(b) The number of free electrons is more than that in a conductor							
	(c) There are no free ele							
	(d) None of these							
53.		purities to the pure semicon	ductor is called					
	(a) Drouping	(b) Drooping	(c) Doping	(d) None of these				
54.		P-type semiconductor has	(c) Doping	[Kerala PMT 2002]				
94.	(a) Large number of hole		(b) Large number of f	ree electrons and few holes				
			•					
55.	· · · ·	(c) Equal number of free electrons and holes(d) No electrons or holesIntrinsic semiconductor is electrically neutral. Extrinsic semiconductor having large number of current carriers						
	would be			[AMU (Engg.) 2001]				
	(a) Positively charged							
	(b) Negatively charged							
	(c) Positively charged or	r negatively charged dependir	ng upon the type of impur	ity that has been added				
	(d) Electrically neutral							
56.	<i>P</i> -type semiconductors a	re made by adding impurity e	element					
	(a) <i>As</i>	(b) <i>P</i>	(c) <i>B</i>	(d) <i>Bi</i>				
57.	A pure semiconductor be	haves slightly as a conductor	at [MH CET (Med.) 2001; BHU 2000; AFMC 2001]				
	(a) Room temperature	(b) Low temperature	(c) High temperature	(d) Both (b) and (c)				

r www.studentbro.in

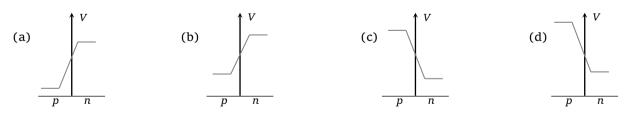
58.	If N_p and N_e be the number of N_p and N_e be the number of N_p and N_p are specified with the number of N_p and N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p and N_p and N_p are specified with the number of N_p and N_p are specified with the number of N_p are specified with the number of N_p and N_p are specified with the number of N_p are specified with the number of N_p are specified with the number of N_p are specified with the number of N_p are specified with the number of N_p are specifi	pers of holes and conduction of	electrons in an extrinsic	semiconductor, then
	(a) $N_p > N_e$			
	(b) $N_p = N_e$			
	(c) $N_p < N_e$			
	(d) $N_p > N_e$ or $N_p < N_e$ de	pending on the nature of imp	urity	
59.	Which of the following wh	en added as an impurity into	the silicon produces N-t	ype semiconductor
			[CPMT 1986, 94; DF	PMT 1999; CBSE 1999; AIIMS 2000]
	(a) <i>P</i>	(b) <i>Al</i>	(c) <i>B</i>	(d) <i>Mg</i>
50.	In <i>P</i> -type semiconductor t	he majority and minority cha	rge carriers are respectiv	vely
			[MP PET 1991, 98	; MP PMT 1998, 99; MH CET 2000]
	(a) Protons and electrons	(b) Electrons and protons	(c) Electrons and hole	s (d) Holes and electrons
51.	If n_e and v_d be the num increased	ber of electrons and drift v	velocity in a semicondu	ctor. When the temperature is [Pb. CET 2000]
	(a) n_e increases and v_d decincreases	creases	(b)	n_e decreases and v_d
	(c) Both n_e and v_d increase	es	(d)	Both n_e and v_d decreases
62.	When N-type of semicond	uctor is heated		[CBSE 1993; DPMT 2000]
	(a) Number of electrons in increases while that of electrons	ncreases while that of holes d actrons decreases	lecreases	(b) Number of holes
	(c) Number of electrons a	nd holes remains same	(d) Number of electron	ns and holes increases equally
63.	Semiconductor is damaged	l by the strong current due to		[MH CET 2000]
	(a) Lack of free electron	(b) Excess of electrons	(c) Excess of proton	(d) None of these
54.	Charge density for intrins	ic semiconductor will be		[RPMT 2000]
	(a) $15 \times 10^{17} m^{-3}$	(b) $1.6 \times 10^{16} m^{-3}$	(c) $15 \times 10^{13} m^{-3}$	(d) $15 \times 10^{14} m^{-3}$
65.	GaAs is			[RPMT 2000]
	(a) Element semiconducto	or(b) Alloy semiconductor	(c) Bad conductor	(d) Metallic semiconductor
56.	At ordinary temperature,	an increase in temperature in	creases the conductivity	v of
			[Simil	ar to (RPMT 1999); MP PMT 2000]
	(a) Conductor	(b) Insulator	(c) Semiconductor	(d) Alloy
57.	An N-type and P-type silic	on can be obtained by doping	pure silicon with	[EAMCET (Med.) 1995, 2000]
	(a) Arsenic and Phosphore Indium	ous (b) (d) Aluminium and Boron	Indium and Aluminium	n (c) Phosphorous and
58.	N-type semiconductors wi	ll be obtained, when germani	um is doped with	
	(a) Phosphorus	(b) Aluminium	(c) Arsenic	(d) Both (a) or (c)
69 .	The state of the energy g applied is called as	ained by valance electrons v	when the temperature is	raised or when electric field is

Get More Learning Materials Here : 💻

r www.studentbro.in

			Solio	d and Semico	onductor 153			
	(a) Valance band	(b) Conduction band	(c) Forbidden band	(d) None of	these			
70.	At O K intrinsic semicon	ductors behaves as			[MP PET 2000]			
	(a) A perfect conductor	(b) A super conductor	(c) A semiconductor	(d) A perfec	ct insulator			
71.	To obtain electrons as m	ajority charge carriers in a se	emiconductor, the impurity m	ixed is				
	(a) Monovalent	(b) Divalent	(c) Trivalent	(d) Pentava	lent			
72.	For germanium crystal,	the forbidden energy gap in jo	oules is					
	(a) 1.12×10 ⁻¹⁹	(b) 1.76×10^{-19}	(c) 1.6×10^{-19}	(d) Zero				
73.	In the terminology relate	ed to semiconductor, what is	a hole					
	(a) Space which is a neg	atively charged						
	(b) Space which was pre	eviously occupied by an electr	on					
	(c) A hole in a space tim	e distribution of the universe	2					
	(d) Dense area in a spac	e which even absorb light <i>i.e</i> .	, black hole					
74.	If n_e and n_h are the num	ber of electrons and holes in	a semiconductor heavily dope	ed with phosp	horus, then [MP PM			
	(a) $n_e >> n_h$	(b) $n_e << n_h$	(c) $n_e \leq n_h$	(d) $n_e = n_h$				
75.	In extrinsic semiconduct	ors						
	(a) The conduction band	and valence band overlap						
	(b) The gap between conduction band and valence band is more than 16 eV							
	(c) The gap between cor	nduction band and valence ba	nd is near about 1 eV					
	(d) The gap between cor	nduction band and valence ba	nd will be 100 eV and more					
76.	Resistivity of a semicono	luctor depends on			[MP PMT 1999]			
	(a) Shape of semiconduc semiconductor	ctor	(b)	Atomic	nature of			
	(c) Length of semicondu semiconductor	ictor	(d)	Shape and a	tomic nature of			
7.	Electronic configuration antimony is added	of Germanium is 2, 8, 18 an	d 4. To make it extrinsic sem	niconductor si	nall quantity of			
					[MP CEE 1999]			
	(a) The material obtained will be <i>N</i> -type Germanium in which electrons and holes are in equal number							
		ed will be <i>P</i> -type Germanium						
			which has more electrons that which has less electrons that		-			
8.	At zero degree Kelvin a j		which has less electrons that	i noies at 100	[MP PET 1999]			
0.	(a) Becomes semiconduc		Becomes good conductor	(c) Become	s bad conductor(d)			
' 9.		or, germanium is doped with	-		[AFMC 1999]			
	(a) Boron	(b) Gallium	(c) Aluminium	(d) All of th				
80.		rs, majority charge carriers a			[AIIMS 1999]			
	(a) Holes	(b) Protons	(c) Neutrons	(d) Electror				

	A. As impurity is mixed in	Si B. Al impurity is mixed	in <i>Si</i> C. <i>B</i> impurity is mixe	ed in GeD. P impuri	y is mixed in G
	(a) A and C	(b) A and D	(c) B and C	(d) B and D	
2.	In case of a semiconductor	r, which of the following state	ement in wrong		
	(a) Doping increases cond resistance is negative	luctivity	(b)	Temperature co	efficient of
	(c) Resisitivity is in betwee temperature, it behaves li	een that of a conductor and in ke a conductor	sulator	(d) At absolu	ite zero
3.	A N-type semiconductor is	3	[AFM	IC 1988; AMU 1998; I	RPMT 1999]
	(a) Negatively charged	(b) Positively charged	(c) Neutral	(d) None of thes	e
4.	When a potential differen	ce is applied across, the curre	nt passing through	[IIT-JEE (Scre	ening) 1999]
	(a) A semiconductor at Ok	K is zero	(b)	A metal at OK is	finite
	(c) A <i>P-N</i> diode at 300K is	s finite if it is reverse biased	(d) All of the above		
5۰	The value indicated by Fer	rmi energy level in an intrinsi	c semiconductor is	[EA	MCET 1997]
	(a) The average energy of	electrons and holes	(b) The energy of electro	ns in conduction ba	ind
	(c) The energy of holes in	valence band	(d) The energy of forbidd	len region	
6.	The dominant mechanism	s for motion of charge carrier	s in forward and reverse bi	ased silicon <i>P-N</i> ju	nctions are[111
	(a) Drift in forward bias,	diffusion in reverse bias	(b) Diffusion in forward	bias, drift in revers	e bias
	(c) Diffusion in both forw	ard and reverse bias	(d) Drift in both forward	and reverse bias	
7.	To obtain a <i>p</i> -type german	ium semiconductor, it must b	e doped with		[CBSE 1997]
	(a) Arsenic	(b) Antimony	(c) Indium	(d) Phosphorus	
8.	In a pure semiconductor t	he current density is given by		[RPMT 1997]
	(a) $J = nq (v_n - v_p)$	(b) $J = nq (v_n + v_p)$	(c) $J = nq (v_n / v_p)$	(d) $J = nq(v_n v_p)$	
9.	Silicon is a semiconductor	. If a small amount of <i>As</i> is ac	lded to it, then its electrica	l conductivity [MI	PMT 1996]
	(a) Decreases	(b) Increases	(c) Remains unchanged	(d) Becomes zer	
о.	Electric current is due to a	lrift of electrons in	-	[CPMT 1996]
	(a) Metallic conductors	(b) Semi-conductors	(c) Both (a) and (b)	(d) None of thes	е
1.	Fermi level of energy of a	n intrinsic semiconductor lies		[EAMCET (Med.) 1995]
	(a) In the middle of forbic forbidden gap	lden gap	(b)	Below the n	niddle of
	(c) Above the middle of fo	orbidden gap	(d) Outside the forbidder	n gap	
2.	In a semiconductor the se	paration between conduction	band and valence band is o	f the order of[EAMO	CET (Med.) 1995
	(a) 100 <i>eV</i>	(b) 10 <i>eV</i>	(c) 1 <i>eV</i>	(d) 0 <i>eV</i>	
3.	Let n_p and n_e be the number of n_p and n_e be the number of n_p and n_p	ber of holes and conduction el	lectrons respectively in a se	emiconductor. Ther	[MP PET 1995
	(a) $n_p > n_e$ in an intrinsic	semiconductor	(b) $n_p = n_e$ in an extrinsic	c semiconductor	
	(c) $n_p = n_e$ in an intrinsic	semiconductor	(d) $n_e > n_p$ in an intrinsic	semiconductor	
4.	An intrinsic semiconducto	r has $10^{18} m^{-3}$ free electrons a	and is doped with pentaval	ent impurity atoms	of density
		density will increase by			
		i defisity will increase by	or der s or magnitude	LKO	orkee 1995]


Get More Learning Materials Here : 📕

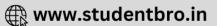
r www.studentbro.in

			Sol	id and Semicono	ductor 15	55			
95.	The probability of electrons to be found in the conduction band of an intrinsic semiconductor at a finite temperature [IIT-JEE 1995]								
	(a) Decreases exponentia	lly with increasing band gap	(b) Increases exponentia	ally with increasir	ng band ga	ар			
	(c) Decreases with increa gap	asing temperature	(d) Is independent of the	he temperature a	and the b	and			
96.	Doping of a semiconducto	or (with small traces of impuri	ty atoms) generally chang	es the resistivity a	as follows	[KCET 199			
	(a) Decreases		(b) Does not alter						
	(c) May increase or decre	ease depending on the dopant	(d) Increases						
97.	Three semi-conductors a arrangement is	are arranged in the increasing	ng order of their energy	• -	The corr MP PMT 19				
	(a) Tellurium, germanium germanium	n, silicon	(b)	Tellurium,	silio	con,			
	(c) Silicon, germanium, t germanium	ellurium	(d)	Silicon,	telluri	um,			
98.	In insulators			Γ	MP PET 19	993]			
	(a) The valence band is p	artially filled with electrons							
	(b) The conduction band	is partially filled with electron	IS						
	(c) The conduction band	(c) The conduction band is filled with electrons and the valence band is empty							
	(d) The conduction band is empty and the valence band is filled with electrons								
99.	The energy gap of silicon	is 1.14 <i>eV</i> . The maximum wave	elength at which silicon wi	ill begin absorbing	g energy i	s[MP PMT			
	(a) 10888 <i>Å</i>	(b) 1088.8 Å	(c) 108.88 Å	(d) 10.888 <i>Å</i>					
100.	The typical ionisation ene	ergy of a donor in silicon is		l	[IIT-JEE 19	992]			
	(a) 10.0 <i>eV</i>	(b) 1.0 <i>eV</i>	(c) 0.1 <i>eV</i>	(d) 0.001 <i>eV</i>					
101.	The level formed due to	impurity atom, in the forbidd	en energy gap, very near	to the valence ba	and in <i>P</i> -t	ype			
	semiconductor is called								
				E	EAMCET 19	990]			
	(a) A forbidden level	(b) A conduction level	(c) A donor level	(d) An accepto	or level				
102.	A <i>P</i> -type semiconductor c	an be obtained by adding	[NCERT 1	979; BIT 1988; MP	PMT1987,	90]			
	(a) Arsenic to pure silicon	n	(b) Gallium to pure silic	on					
	(c) Antimony to pure ger germanium	manium	(d)	Phosphorus	to p	oure			
103.	Which of the following en	ergy band diagram shows the	N-type semiconductor		[RPET 19	986]			
	(a) $\begin{array}{c} Conductio \\ n \ band \end{array}$	(b) Conductio n band Impurity	(c) Valance band (VB) \uparrow 1eV Impurity level	(d) $Valance band (VB)$					
	Eg 1ęV Valance band (VB)	Valance band (VB)	Conductio n band	Conductio n band					
104.	If the intensity of electric	field is <i>E</i> , then current densit	y is directly proportional t	to	[RPET 19	986]			
	(a) <i>E</i>	(b) 1/ <i>E</i>	(c) <i>E</i> ²	(d) $1/E^2$					
105.	The mobility of free elect	ron is greater than that of free	holes because						
	(a) The carry negative ch	arge	(b)	They are light					

156 Solid and Semiconductor (c) They mutually collide less (d) They require low energy to continue their motion **106.** The relation between the number of free electrons in semiconductors (n) and its temperature (T) is (a) $n \propto T^2$ (c) $n \propto \sqrt{T}$ (d) $n \propto T^{3/2}$ (b) $n \propto T$ **107.** The electron mobility in *N*-type germanium is 3900 cm^2/v -s and its conductivity is 6.24 *mho/cm*, then impurity concentration will be if the effect of cotters is negligible (a) 10^{15} cm³ (b) $10^{13} / cm^3$ (c) $10^{12} / cm^3$ (d) $10^{16} / cm^3$ 108. The densities of electrons and cotters in an extrinsic semiconductor are 8×10^{13} cm⁻³ and 5×10^{12} cm⁻³ respectively. The mobilities of electrons and holes are 23×10^3 cm²/v-s and 10^2 cm² /v-s respectively. The type of semiconductors is (a) P (b) N (c) Both types (d) None of these **109.** In an N-type semiconductor electron mobility is 3900 cm^2/v -s and its conductivity is 5 mho/cm. The impurity concentration will be (Effect of holes is negligible) (b) $8 \times 10^{13} / cm^3$ (c) $8 \times 10^{12} / cm^3$ (d) $8 \times 10^{10} / cm^3$ (a) $8 \times 10^{15} / cm^3$ 110. The forbidden energy gap of a germanium semiconductor is 0.75 eV. The minimum thermal energy of electrons reaching the conduction band from the valence band should be (a) 0.5 eV (c) 0.25 eV (b) 0.75 eV (d) 1.5 eV In semiconductor the concentrations of electrons and holes are $8 \times 10^{18}/m^3$ and $5 \times 10^{18}/m$ respectively. If the 111. mobilities of electrons and hole are 2.3 m^2/v -s and 0.01 m^2/v -s respectively, then semiconductor is (a) *N*-type and its resistivity is 0.34 ohm-metre (b) P-type and its resistivity is 0.034 ohm-metre (c) N-type and its resistivity is 0.034 ohm-metre (d) P-type and its resistivity is 3.40 ohm-metre Semiconductor diode **112.** The *P*-*N* junction diode is used as [AFMC 1997; EAMCET 1999; DPMT 2000; MP PMT 2004] (c) A rectifier (b) An oscillator (a) An amplifier (d) A modulator 113. In a forward biased *P*-*N* junction diode, the potential barrier in the depletion region is of the form ...[KCET 2004]

114. When *P*-*N* junction diode is forward biased, then [RPMT 1997; CBSE 1999; UPSEAT 2002; RPET 2003; AIEEE 2004]

(a) The depletion region is reduced and barrier height is increased


(b) The depletion region is widened and barrier height is reduced

- (c) Both the depletion region and barrier height are reduced
- (d) Both the depletion region and barrier height are increased

115. A crystal diode is a

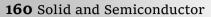
[MP PET 2004]

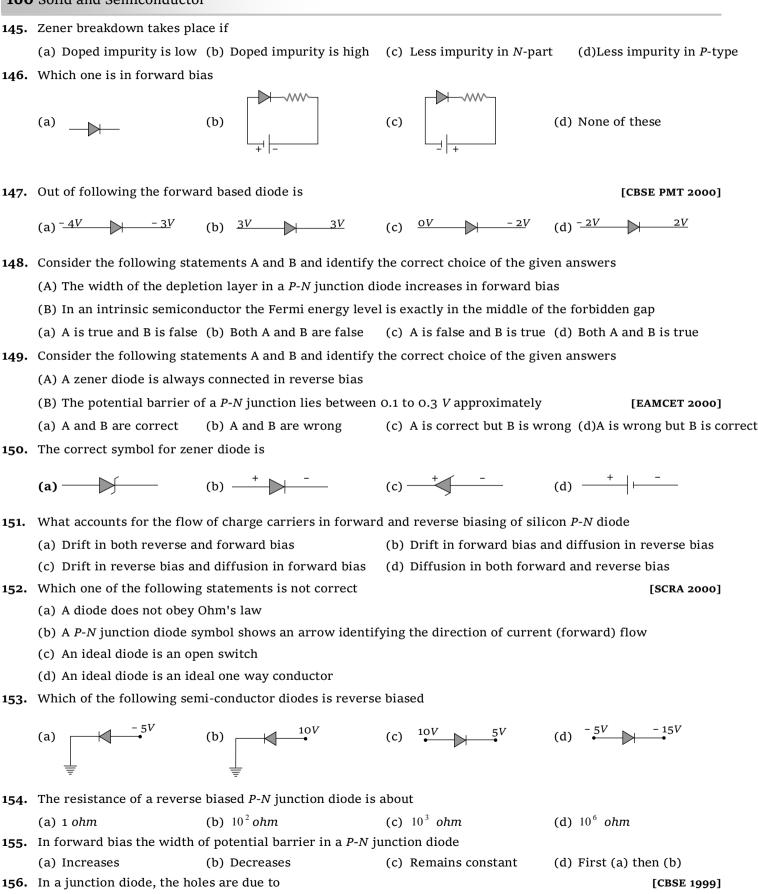
				Solid ai	nd Semi	conductor 157
	(a) Non-linear device	(b) Amplifying device	(c) Linear dev	ice (d	l) Fluctu	ating device
16.	In a <i>P-N</i> junction photo proportional to	o cell, the value of photo-eld	ectromotive forc	e produced by	monocl	nromatic light is
				[CBSE	E PMT/PD	T Screening 2004]
	(a) The voltage applied a	t the <i>P-N</i> junction	(b) The barrie	r voltage at the	<i>P-N</i> jun	ction
	(c) The intensity of the li	ight falling on the cell	(d) The freque	ency of the light	t falling o	on the cell
7 .	The peak voltage in the of The dc component of the	output of a half-wave diode re output voltage is	ectifier fed with		-	out filter is 10 <i>V</i> . (Screening) 2004]
	(a) 20/ <i>πV</i>	(b) $10 / \sqrt{2} V$	(c) 10/ <i>π</i> V	(c	l) 10 V	
8.	In the circuit, if the forwa	ard voltage drop for the diode	is 0.5 <i>V</i> . The curr	rent will be		[UPSEAT 2003]
				0,5	V	
	(a) 3.4 <i>mA</i>					
	(b) 2 <i>mA</i>				2.2 KΩ	
	(c) 2.5 <i>mA</i>			8 <i>V</i> T	\$	
	(d) 3 <i>mA</i>					
9.		etion layer of a reverse-biased	<i>P-N</i> junction. th	e		[AIEEE 2003]
	(a) Potential is zero		(b) Electric fie			[
	(c) Potential is maximum	1		eld is maximum	1	
•		cuit is operating from 50 <i>Hz</i> 1				ripple will be CR
	(a) 50 <i>Hz</i>	(b) 70.7 <i>Hz</i>	(c) 100 Hz	-	l) 25 <i>Hz</i>	Tipple will belen
1.		junction diode does not depe			() 23 112	[CBSE 2003]
_,	(a) Temperature	(b) Forward bias	(c) Doping der	nsity (d	l) Diode	
2.	-	f an unbiased <i>P-N</i> junction dio			,	
	1 0	-		991, 2001; RPMT	2001; M	P PMT 1994, 2003]
	(a) Only electrons	(b) Only holes	(c) Both electr		(d)	Only fixed ions
3.	The reverse biasing in a <i>l</i>	P-N junction diode		[MP PMT 1991;	EAMCET	1994; CBSE 2003]
	(a) Decreases the potenti barrier	al barrier	(b)	In	icreases	the potential
	(c) Increases the number	of minority charge carriers	(d) Increases t	the number of 1	najority	charge carriers
4.	The electrical circuit used	l to get smooth dc output fron	n a rectifier circu	it is called		[KCET 2003]
	(a) Oscillator	(b) Filter	(c) Amplifier	(ċ	l) Logic §	gates
5٠	The approximate ratio of	resistances in the forward an	d reverse bias of	the PN junctio	n diode i	S
						1999, 2002, 2003]
	(a) 10^2 : 1	(b) 10^{-2} : 1	(c) $1:10^{-4}$	-	l) 1 : 10^4	
6.	An ideal diode is connected	ed in series with a resistor <i>R</i> t	hen voltage acro	ss R will be		[CBSE PMT 2002]
	(a) 2V in forward bias				D	
	(b) V in forward bias					
	(b) <i>V</i> in reverse bias			• V	•	

Get More Learning Materials Here :

Regional www.studentbro.in

158 Solid and Semiconductor (d) Zero in forward bias **127.** In a *P*-*N* junction diode [CBSE PMT 2002] (a) Potential at *P* is more than *N* (b) Potential at *P* is less than *N* (c) Potential at *P* and *N* is the same Fluctuating (d) potential between P and N **128.** On increasing the reverse bias to a large value in a *P*-*N* junction diode, the current [BHU 2002] (a) Remains fixed (b) Decrease slowly (c) Increase slowly (d) Suddenly increases 129. The diode shown in the circuit is a silicon diode. The potential difference between the points A and B will be[RPMT 200 (a) 6V (b) 0.6V (c) 0.7V 6V (d) 0V **130.** Function of rectifier is [AFMC 2002] (a) To convert ac into dc (b) To convert dc into ac (c) Both (a) and (b) (d) None of these 131. When the *P* end of *P*-*N* junction is connected to the negative terminal of the battery and the *N* end to the positive terminal of the battery, then the P-N junction behaves like [MP PET 2002] (a) A conductor (b) An insulator (c) A super-conductor (d) A semi-conductor **132.** If the two ends *P* and *N* of a *P*-*N* diode junction are joined by a wire [MP PMT 2002] (a) There will not be a steady current in the circuit (b) There will be a steady current from N side to P side (c) There will be a steady current from *P* side to *N* side (d) There may not be a current depending upon the resistance of the connecting wire **133.** If no external voltage is applied across *P*-*N* junction, there would be [Orissa JEE 2002] (a) No electric field across the junction (b) An electric field pointing from *N*-type to *P*-type side across the junction (c) An electric field pointing from *P*-type to *N*-type side across the junction (d) A temporary electric field during formation of *P*-*N* junction that would subsequently disappear **134.** Zener breakdown in a semi-conductor diode occurs when [UPSEAT 2002] (a) Forward currents exceeds certain value (b) Reverse bias exceeds certain value (c) Forward bias exceeds certain value (d) Potential barrier is reduced to zero 135. In the given figure, which of the diodes are forward biased [Kerala PET 2002] +5VR $-10V^{d}$ (a) 1, 2, 3 (b) 2, 4, 5 (c) 1, 3, 4 (d) 2, 3, 4 **136.** Different voltages are applied across a *P*-*N* junction and the currents are measured for each value. Which of the following graphs is obtained between voltage and current [MP PET 1996; UPSEAT 2002]

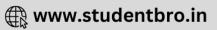

(c)


(a)

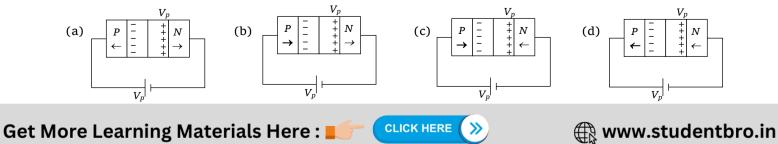
🕀 www.studentbro.in

(d)

137.	The potential barrier, in th	ne depletion layer, is due to		[Pb. PMT 1999; AIIMS 2002]
	(a) Ions	(b) Holes	(c) Electrons	(d) Both (b) and (c)
138.	When the forward voltage	is increased in the crystal di	ode, then the thickness	of depletion layer
	(a) Decreases		(b) Increases	
	(c) Remains unchanged		(d) Increases in the	ratio of applied voltage
139.	Avalanche breakdown is d	ue to		
	(a) Collision of minority c	harge carrier	(b) Increase in deple	etion layer thickness
	(c) Decrease in depletion	layer thickness	(d) None of these	
140.	The cause of potential bar	rier in <i>P-N</i> junction diode is		[RPMT 2001]
	(a) Concentration of (+)ve	e charge in <i>P-N</i> junction		
	(b) Defficiency (+)ve char	ge in <i>P-N</i> junction		
	(c) Defficiency (-)ve char	ge in <i>P-N</i> junction		
	(d) Concentration of (+)ve	e and (–) <i>ve</i> charge near the ju	nction	
141.	Which is reverse biased di $=$	ode		[DCE 2001]
	T	- 20V		
	(a)	- 20V (b)	(c) 15V	(d)
	\perp 5V	- 10V	ہ 10 <i>V</i>	- 5 ^V
142.	In comparison to a half wa	we rectifier, the full wave rec	ctifier gives lower	
	(a) Efficiency	(b) Average dc	(c) Average output v	oltage (d) None of these
143.	A full wave rectifier circui	t along with the input and ou	tput voltages is shown	in the figure
			tpu	
			Input	
		A B C Out	<u>put</u>	
	The contribution to output	voltage from diode - 2 is		[MP PMT 2001]
	(a) <i>A</i> , <i>C</i>	(b) <i>B</i> , <i>D</i>	(c) <i>B</i> , <i>C</i>	(d) <i>A</i> , <i>D</i>
144		(0) D, D	(0) 2, 0	
144.	Find V _{AB}			[RPMT 2000]
			30 <i>V</i>	\$10Ω
	(a) 10 V		<u>т</u>	
	(b) 20 V		V	$AB \downarrow $ $10\Omega $ 10Ω
	(c) 30 V			
	(d) None of these			
Get M	ore Learning Mate	rials Here : 🎼 🔍		r www.studentbro.in


CLICK HERE

Get More Learning Materials Here :


🕀 www.studentbro.in

				Solid	and Semiconductor 161
	(a) Protons ((b) Neutrons	(c) Extra elect	rons	(d) Missing of electrons
157.	<i>P</i> -type crystal of a <i>P</i> - <i>N</i> ju connected to negative termine		to a positive t	terminal of	battery and <i>n</i> -type crystal
	(a) Diode is forward biased		(b)		Diode is reverse biased
	(c) Potential barrier in depl unchanged	etion layer increases	(d) Potential	barrier in	depletion layer remains
158.	No bias is applied to a <i>P-N</i> ju	unction, then the current			[RPMT 1999]
	(a) Is zero because the num	ber of charge carriers flowing	ng on both sides	is same	
	(b) Is zero because the char	ge carriers do not move			
	(c) Is non-zero				
	(d) None of these				
159.	Zener diode is used as				[CBSE PMT 1999]
	(a) Half wave rectifier ((b) Full wave rectifier	(c) ac voltage	stabilizer	(d) dc voltage stabilizer
160.	The width of forbidden gas semiconductor the distance			e crystal is	converted in to a <i>N</i> -type
	(a) Greater than 0.55 <i>eV</i> ((b) Equal to 0.55 eV	(c) Lesser that	n 0.55 <i>eV</i>	(d) Equal to 1.1 eV
161.	Which one is reverse-biased				
	(a) $10V^{\bullet}$	(b) $ -10V$	(c) - 10V	Ē	(d) $10V$
162.	In a <i>P-N</i> junction diode if <i>P</i> i	region is heavily doped than	N region then t	he depletion	layer is
	(a) Greater in <i>P</i> region		(b) Greater in	N region	
	(c) Equal in both region		(d) No depletion	on layer is fo	ormed in this case
163.	When a potential difference	is applied across, the curre	nt passing throu	gh	[IIT-JEE 1999]
	(a) An insulator at OK is zer zero	0	(b)		A semi-conductor at OK is
	(c) A <i>P-N</i> diode at 300 <i>K</i> is f	finite. If it is reverse biased	(d) All of these	e	
164.	A semiconductor <i>X</i> is made made by doping germanium shown. Which of the followi	with indium ($Z = 49$). The			A second semiconductor Y is nd connected to a battery as
	(a) X is P-type, Y is N-type a	and the junction is forward	biased		
	(b) X is N-type, Y is P-type a	and the junction is forward	biased		
	(c) X is P-type, Y is N-type a	and the junction is reverse b	iased		
	(d) X is N-type, Y is P-type a	and the junction is reverse b	iased		
165.			-		tance. A current is found to s almost to zero. The device
	(a) A <i>P</i> -type semiconductor	(b)	An <i>N</i> -type sem	iconductor	(c) A <i>P</i> - <i>N</i> junction (d)

166.	In <i>P</i> - <i>N</i> junction, which stops electron and holes to move from <i>P</i> to <i>N</i> and <i>N</i> to <i>P</i> [CPMT 1998]							
	(a) Increase in +ve	and – <i>ve</i> ions at junction	(b) Increas	e in electrons	at junction			
	(c) Increase in hole electrons at junction	-	(d)		Increase i	in holes	and	
167.	The potential in the	depletion layer is due to			[EAMC	ET (Engg.)	1998]	
	(a) Electrons	(b) Holes	(c) Ions		(d) Forbidd	en band		
168.	The two diodes A an	d B are biased as shown, then	_			[EAMCET	1997	
	(a) The diodes A and	d <i>B</i> are reverse biased		- 5 V A	- 9 V			
	(b) The diode A is fo	orward biased and <i>B</i> is reverse b	iased					
	(c) The diodes <i>B</i> is f	forward biased and diode A is re	verse biase	03 V B	- 6 V			
	(d) The diodes A and	d B are forward biased		P .				
169.	In <i>P-N</i> junction ava	llanche current flows in circu	it when biasin	g is				
	(a) Forward	(b) Reverse	(c) Zero		(d) Excess			
170.		n fig. contains two diode D_1 an esistance. If the battery voltag		irrent throug				
	(a) Zero (b) 0.02			D_1	M			
	(c) 0.03			6V	ΩΩ			
	(d) 0.036			01				
171.		ctivity of a semiconductor incre e band gap (in <i>eV</i>) for the semico		iation of wav	elength shorte	r than 248	30 nn	
	(a) 0.9	(b) 0.78	(c) 0.5		(d) 1.1			
172.	If the forward volta	ge in a semiconductor diode is de	oubled, the widtl	h of the deplet	tion layer will			
	(a) Become half	(b) Become one-fourth	(c) Remain	unchanged	(d) Become	double		
173.	In <i>P-N</i> junction, the	barrier potential offers resistan	ce to					
	(a) Free electrons in	N region and holes in P region						
	(b) Free electrons in	P region and holes in N region						
	(c) Only free electro							
	(d) Only holes in <i>P</i> r	-						
174.	-	rd biasing of <i>P-N</i> junction, which	h one of the follo	owing figures	correctly depic	cts the dire	ectior	
	of flow of carriers							
						[CBSE	1995	
		V						

[RPMT 1995]

175. Symbolic representation of photodiode is
(a) (b) (c) (c) (c) (c)

176. Which of the following statements concerning the depletion zone of an unbiased *P*-*N* junction are true

(a) The width of the zone is independent of the densities of the dopants (impurities)

(b) The width of the zone is dependent on the densities of the dopants

(c) The electric field in the zone is provided by the electrons in the conduction band and the holes in the balance band

(d) The electric field in the zone is produced by the ionized dopant atoms

177. The depletion layer in the P-N junction region is caused by

(a) Drift of holes (b) Diffusion of charge carriers (c) Migration of impurity ions (d)

178. On increasing the reverse bias to a large value in a *P*-*N* junction diode, current [MP PMT 1994]

(a) Increase slowly (b) Remains fixed (c) Suddenly increases (d) Decreases slowly

179. To make a *P*-*N* junction conducting

(a) The value of forward bias should be more than the barrier potential

(b) The value of forward bias should be less than the barrier potential

(c) The value of reverse bias should be more than the barrier potential

(d) The value of reverse bias should be less than the barrier potential

180. According to diagram an ac source of 50 Hz is connected to a transformer coil by a filter. P and Q ends of the secondary coil are connected to a C.R.O. Choose the correct statement from the following which describes. What we get between terminals P and Q

[RPET 1986, 92]

🕀 www.studentbro.in

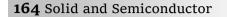
(a) There is no potential difference

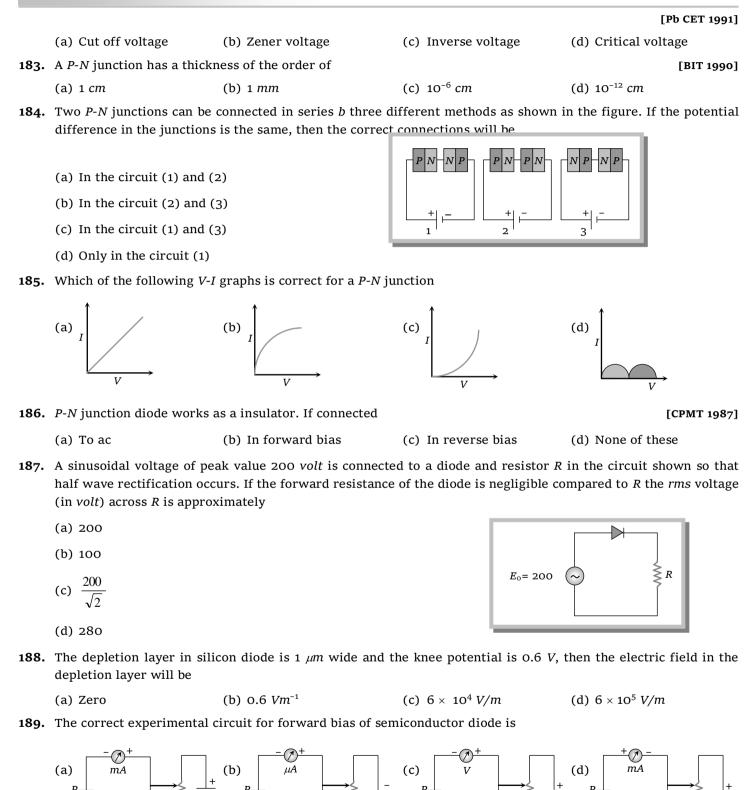
(b) There is alternating voltage

(c) There is fluctuated dc between terminals P and Q and minimum value of it is zero

(d) There is a constant dc between P and Q

- **181.** Which is the wrong statement in following sentences ? A device in which P and N-type semiconductors are used is more useful then a vacuum type because
 [MP PET 1992]
 - (a) Power is not necessary to heat the filament


(b) It is more stable


(c) Very less heat is produced in it

(d) Its efficiency is high due to a high voltage across the junction

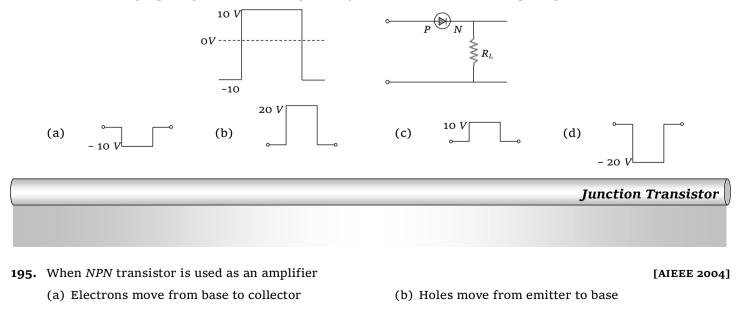
182. In case of a *P*-*N* junction diode at high value of reverse bias, the current rises sharply. The value of reverse bias is known as

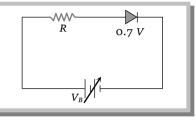
CLICK HERE

Get More Learning Materials Here : 📕

N

mA

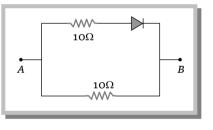

R www.studentbro.in


- **190.** The junction diode in the following circuit requires a minimum current of 1 *mA* to be above the knee point (0.7 *V*) of its I-V characteristic curve. The voltage across the diode is independent of current above the knee point. If $V_B = 5 V$, then the maximum value of *R* so that the voltage is above the knee point, will be
 - (a) 4.3 *k*Ω
 - (b) 860 kΩ
 - (c) 4.3 Ω
 - (d) 860 Ω
- **191.** The current through an ideal *PN* junction shown in the following circuit diagram will be
 - (a) 5 *mA*
 - (b) 10 *mA*
 - (c) 70 *mA*
 - (d) 100 *mA*
- **192.** If V_A and V_B denote the potentials of A and B then the equivalent resistance between A and B in the adjoining electric circuit is
 - (a) 10 ohms if $V_A > V_B$
 - (b) 5 ohms if $V_A < V_B$
 - (c) 5 ohms if $V_A > V_B$
 - (d) 20 ohms if $V_A > V_B$
- **193.** In junction diode reverse bias is changed from 10 V to 15 V, the current changes from 25 μ A to 75 μ A. The resistance of the junction diode will be

(c) 10 ohm

- (a) 0.1 ohm
- **194.** If the following input signal is sent through a *PN*-junction diode, then the output signal across *R*_L will be

(b) 10⁵ ohm



700Ω

.^^/

N

(d) $10^6 ohm$

(a) 0° (b) 90° (c) 180° (d) 270° (a) Positive feed back (b) Large gain (c) No feedback (d) Negative feedback (a) Positive feed back (b) Large gain (c) No feedback (d) Negative feedback (a) Reverse, forward (b) Reverse, reverse (c) Forward, forward (d) Porward, reverse (a) Reverse, forward (b) Reverse, reverse (c) Forward, forward (d) Forward, reverse (c) Collector is positive and emitter is negative with respect to the base (c) Collector is positive and emitter is negative with respect to the base (c) Collector is positive and emitter is negative with respect to the base (c) Collector is positive and emitter is negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter an engative with respect to the base (d) Both collector and emitter an engative with respect to the base (d) Both collector is commonly used because current gain is maximum (d) Common emitter is commonly used because current gain is maximum (d) Common emitter is the least used transistor (a) $4 = 0$, (b) 49 , (c) 96 , (d) 9.5 (a) 4.9 , (b) 49 , (c) 96 , (d) 9.6 (a) 12 , (b) 24 , (c) 6 , (d) 5 (a) 12 , (b) 24 , (c) 6 , (d) 5 (a) 12 , (b) 24 , (c) 6 , (d) 5 (a) 12 , (b) 24 , (c) 6 , (d) 5 (a) 12 , (b) 24 , (c) 6 , (d) 5 (b) $16 < 12, 21, 1$, (c) $1_2 < 1_2, 1$, (d) $1_2, 21, 21, 1$ (a) $12 = 170$, (b) $1_2 < 1_2, 21, 1$, (c) $1_2 < 1_2, 21, 1$, (d) $1_2, 21, 21, 1$ (e) $12 < 10, 24, 21, 1$, (c) $1_2 < 1_2, 21, 1$, (d) $1_2, 21, 21, 1$ (for $11, 1_2, 1_4$ are the lengths of the emitter, base and collector of a transistor then (a) $1_1 = 1_2 = 1_3$, (b) $1_2 < 1_2, 21, 1$, (c) $1_2 < 1_2, 21, 1$, (d)		(c) Electrons move f	rom collector to base	(d) Holes move from	n base to emitter										
97. An oscillator is nothing but an amplifier withIMP PET act(a) Positive feed back(b) Large gain(c) No feedback(d) Negative feedback98. The emitter-base junction of a transistor is biased while the collector-base junction is biased(a) Reverse, forward(b) Reverse, reverse(c) Forward, forward(d) Forward, reverse99. In an NPN transistor the collector current is 24 mA. If 80% of electrons reach collector its base current in m Ikerala PMT 2004](a) 36(b) 26(c) 16(d) 600. A NPN transistor conducts when(a) 36 the collector and emitter is negative with respect to the base(b) Collector is positive and emitter is negative with respect to the base(c) Collector is positive and emitter is at same potential as the base(d) Both collector and emitter are negative with respect to the base(d) Both collector is and β of a transistor[CET 20](a) $\alpha = \beta$ (b) $\beta < 1 \ \alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1 \ \alpha < 1$ 02. Which of the following is true(a) Common collector is commonly used because current gain is maximum(b) Common collector is commonly used because current gain is maximum(d) Common base transistor is commonly used because current gain is maximum(d) Common nemitter is the least used transistor[CBSE PMT 20]03. If $\alpha = 0.98$ and current through emitter $t_e = 20 \ mA$, the value of β is(a) 1.4(d) 0.35 mA(a) 1.2(b) 2.4(c) 6(d) 9.6(d) 9.603. If $\alpha = 0.98$ and current through emitter $t_e = 20 \ mA$, the value of β is(a) 1.4(d) 0.35 mA(a) 1.4(b) 2.4(c) 6(d) 9.60	96.	The phase difference between input and output voltages of a CE circuit is [MP PET 2004													
(a) Positive feed back(b) Large gain(c) No feedback(d) Negative feedback98. The emitter-base junction of a transistor is biased while the collector-base junction is biased(a) Reverse, forward(b) Reverse, reverse(c) Forward, forward(d) Porward, reverse99. In an NPN transistor the collector current is 24 mA. If 80% of electrons reach collector its base current in m Ikerala PMT 2001(d) 6(a) 35(b) 26(c) 16(d) 6(a) 36(b) 26(c) 16(d) 6(a) ADN transistor conducts when(a) Both collector and emitter are positive with respect to the base(b) Collector is positive and emitter is negative with respect to the base(c) Collector is positive and emitter are negative with respect to the base(d) Both collector and emitter are negative with respect to the base(d) Both collector and emitter are negative with respect to the base(d) Both of the following is true(a) $\alpha = \beta$ (b) $\beta < 1 \alpha > 1$ (e) Common base transistor is commonly used because current gain is maximum(b) Common emitter is commonly used because current gain is maximum(c) Common collector is commonly used because current gain is maximum(d) Common base configuration of PNP transistor $\frac{I_C}{I_F} = 0.98$ then maximum current gain in common emitconfiguration will be(a) 12(b) 24(c) 0.29 mA(d) 0.35 mA(e) 1 $a_{-1}I_{-1}$ (f) $I_{-1}I_{-1}I_{-1}$ (h) $I_{-2}I_{-2}I_{-1}$ (h) $I_{-2}I_{-2}I_{-1}$ (h) $I_{-2}I_{-2}I_{-1}$ (h) $I_{-1}I_{-2}I_{-1}I_{-1$		(a) 0 ^o	(b) 90°	(c) 180°	(d) 270°										
98. The emitter-base junction of a transistor is biased while the collector-base junction is biased (a) Reverse, forward (b) Reverse, reverse (c) Forward, forward (d) Forward, reverse (a) Reverse, forward (b) Reverse, reverse (c) Forward, forward (d) Forward, reverse (c) Collector is base current in <i>m</i> (a) 36 (b) 26 (c) 16 (d) 6 60. A <i>NPN</i> transistor conducts when (a) Both collector and emitter are positive with respect to the base (b) Collector is positive and emitter is at same potential as the base (c) Collector is positive and emitter is at same potential as the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector is positive and emitter is at same potential as the base (d) Both collector is positive and emitter is a transistor (a) $\alpha = \beta$ (b) $\beta < 1 \alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1 \alpha < 1$ (e) Which of the following is true (a) Common maitter is commonly used because current gain is maximum (b) Common emitter is the least used transistor (c) Common collector is commonly used because current gain is maximum (d) Common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_z} = 0.98$ then maximum current gain in common emit configuration will be (a) 12 (b) 24 (c) 6 (d) 5 (a) 14 (c) 6 (d) 5 (c) 16 (d) 5 (c) 16 <i>A A</i> (d) 0.35 mA (c) 16 <i>I</i> l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor them (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < (d) l_1 > l_1 > l_2$ (c) $l_1 = 1, mA, l_0 = 9 mA, (b) l_2 < l_3 > l_4$ (c) $l_1 = 1 mA, l_2 = 11 mA, (c) l_2 < 1 < l_4$ (f) For a common base to contiguate, base and collector of a transistor them (a) $l_1 = l_2 = l_3$ (b) $l_1 < l_2 > l_1$ (c) $l_1 < l_1 < l_4$ (d) l_2	97.	An oscillator is nothi	ng but an amplifier with		[MP PET 2004]										
(a) Reverse, forward (b) Reverse, reverse (c) Forward, forward (d) Forward, reverse (a) Reverse, forward (b) Reverse, reverse (c) Forward, forward (d) Forward, reverse (a) In an NFN transistor the collector current is 24 mA. If 80% of electrons reach collector its base current in m [Kerala PMT 2004] (a) 36 (b) 26 (c) 16 (d) 6 (b) ANPN transistor conducts when (a) Both collector and emitter are positive with respect to the base (b) Collector is positive and emitter is negative with respect to the base (c) Collector is positive and emitter is negative with respect to the base (c) Collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (e) Collector is positive and emitter is a same potential as the base (d) Both collector and emitter are negative with respect to the base (e) Collector is positive and emitter is negative with respect to the base (f) Collector is positive and emitter is a transistor (g) Which of the following is true (a) Common base transistor is commonly used because current gain is maximum (b) Common emitter is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor or. If $\alpha = 0.98$ and current through emitter $l_e = 20$ mA, the value of β is (a) 4.9 (b) 4.9 (c) 96 (d) 9.6 (c) 50 In a P-N-P transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is (a) 0.4 mA (b) 0.2 mA (c) 0.2 g mA (d) 0.35 mA (c) 1 a 0.4 mA (b) 0.2 mA (c) 0.2 g mA (d) 0.35 mA (a) 0.4 mA (b) 0.2 mA (c) 0.2 g mA (d) 0.35 mA (c) 1 an NPN transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (l_e) and base current (l_e) are given by (A) $l_x = -1$ mA, $l_b = 9$ mA, (b) $l_x = 9$ mA, $l_b = -1$ mA (c) $l_x = 1$ mA, $l_x = 1$ m		(a) Positive feed bac	k (b) Large gain	(c) No feedback	(d) Negative feedback										
99. In an NPN transistor the collector current is 24 mA. If 80% of electrons reach collector its base current in m [Kerala PMT 2004](a) 36(b) 26(c) 16(d) 6(a) 36(b) 26(c) 16(d) 6(a) 80th collector and emitter are positive with respect to the base(b) Collector is positive and emitter is negative with respect to the base(c) Collector is positive and emitter are negative with respect to the base(c) Collector is positive and emitter are negative with respect to the base(d) Both collector and emitter are negative with respect to the base(d) Both collector and emitter are negative with respect to the base(a) a = β (b) $\beta < 1$ $\alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1$ $\alpha < 1$ (a) $\alpha = \beta$ (b) $\beta < 1$ $\alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1$ $\alpha < 1$ (a) Common base transistor is commonly used because current gain is maximum(b) Common emitter is commonly used because current gain is maximum(c) Common collector is commonly used because current gain is maximum(d) Common emitter is the least used transistor(a) 4.9(b) 4.9(c) 96(d) 9.6(d) Common base configuration of PNP transistor $\frac{l_c}{l_e} = 0.98$ then maximum current gain in common emit configuration will be(a) 12(b) 24(c) 6(a) 3.0, 4 mA(b) 0.2 mA(c) 0.2.9 mA(d) 0.35 mA(c) 0.2.9 mA(d) 0.35 mA(a) 0.4, mA(b) 0.2 mA(c) 0.2.9 mA(d) 1, -l_1, l_3 are the lengths of the emitter, base and collector of a transistor them[KCET 2a(a) 1, -l_2 = l_5(b) $l_1 < l_2 > l_1$ (c) $l_1 < l_1 < m_1$, l	98.	The emitter-base jun	ction of a transistor is bi	ased while the collector-ba	se junction is biased										
[Kerala PMT 2004](a) 36(b) 26(c) 16(d) 6(a) 80h collector and emitter are positive with respect to the base(b) Collector is positive and emitter is negative with respect to the base(c) Collector is positive and emitter is negative with respect to the base(c) Collector is positive and emitter are negative with respect to the base(d) Both collector and emitter are negative with respect to the base(c) Collector is positive and emitter is at same potential as the base(d) Both collector and emitter are negative with respect to the base(c) Collector is positive and p/ of a transistor(a) a $= \beta$ (b) $\beta < 1$ $a > 1$ (c) $a\beta = 1$ (d) $\beta > 1$ $a < 1$ (d) $\beta > 1$ $a < 1$ (e) Common base transistor is commonly used because current gain is maximum(f) Common emitter is the least used transistor(g) Common emitter is the least used transistor(g) Common base configuration of PNP transistor(g) 4.9(f) 9.6(g) 12(h) 9.49(c) 6(d) 9.5(g) 12(h) 2.4(g) 12(h) 2.4(g) 12(h) 2.4(g) 12(h) 2.4(h) 0.5 mA(h) 0.2 mA(h) 0.2 mA(h) 0.2.9 mA(h) 0.3.5 mA(g) 1.1 = 1.2 = l_1(h) 1.2 < l_1		(a) Reverse, forward	l (b) Reverse, reverse	(c) Forward, forwar	rd (d) Forward, reverse										
00. A NPN transistor conducts when (a) Both collector and emitter are positive with respect to the base (b) Collector is positive and emitter is at same potential as the base (d) Both collector and emitter is at same potential as the base (d) Both collector and emitter are negative with respect to the base (e) Collector is positive and emitter is at same potential as the base (d) Both collector and emitter are negative with respect to the base (o) Both collector and emitter is at same potential as the base (d) Both collector and emitter is at ransistor (c) $\alpha\beta = 1$ (d) $\beta > 1$ (d) $\beta > 1$ (e) $\beta < 1$ (f) $\beta < 1$ (g) $\beta < 1$ (h) $\beta < 1$ (99.			A. If 80% of electrons reac	h collector its base current in <i>mA</i> is										
(a) Both collector and emitter are positive with respect to the base (b) Collector is positive and emitter is negative with respect to the base (c) Collector is positive and emitter is at same potential as the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (a) $\alpha = \beta$ (b) $\beta < 1 \alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1 \alpha < 1$ (e) Common base transistor is commonly used because current gain is maximum (b) Common emitter is the least used transistor (c) Common emitter is the least used transistor (d) Common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_c} = 0.98$ then maximum current gain in common emit configuration will be (2055) In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (c) 0.29 mA (d) 0.35 mA (c) $l_3 < l_1 > l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $l_4 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $l_4 = -1 mA$, $l_6 = 9 mA$ (b) $l_6 = 9 mA$, $l_6 = -1 mA$, $l_6 = 1 mA$, $l_6 = 11 mA$ (d) $l_6 = 11 mA$, $l_$		(a) 36	(b) 26	(c) 16	(d) 6										
(b) Collector is positive and emitter is negative with respect to the base (c) Collector is positive and emitter is at same potential as the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (e) Both collector and emitter are negative with respect to the base (f) Both collector and emitter are negative with respect to the base (a) $\alpha = \beta$ (b) $\beta < 1 \alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1 \alpha < 1$ (e) Which of the following is true (a) Common base transistor is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor (e) Common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_e} = 0.98$ then maximum current gain in common emit configuration will be (EBSE PMT 20 (a) 12 (b) 24 (c) 6 (d) 5 (a) 12 (b) 24 (c) 6 (d) 5 (b) 1a 2 (b) 24 (c) 6 (d) 5 (c) 1a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (c) 0.29 mA (d) 0.35 mA (c) 1a 2 l_a l_a l_a l_a l_a l_a l_a l_b l_a	00.	A NPN transistor con	ducts when												
(c) Collector is positive and emitter is at same potential as the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (d) Both collector and emitter are negative with respect to the base (a) $\alpha = \beta$ (b) $\beta < 1 \alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1 \alpha < 1$ (a) Common base transistor is commonly used because current gain is maximum (b) Common emitter is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor 03. If $\alpha = 0.98$ and current through emitter $l_e = 20 \ mA$, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 04. For a common base configuration of <i>PNP</i> transistor $\frac{l_e}{l_e} = 0.98$ then maximum current gain in common emit configuration will be [CBSE PMT 20] (a) 12 (b) 24 (c) 6 (d) 5 10 a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 20] (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 06. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_1 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 07. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collect the emitter current (l_b) and base current (l_b) are given by (a) $l_8 = -1 \ mA, \ l_8 = 9 \ mA$ (b) $l_8 = 9 \ mA, \ l_8 = -1 \ mA$ (c) $l_8 = 1 \ mA, \ l_8 = 11 \ mA$		(a) Both collector an	d emitter are positive with re	espect to the base											
(d) Both collector and emitter are negative with respect to the base 01. In the case of constants α and β of a transistor [CET 20] (a) $\alpha = \beta$ (b) $\beta < 1$ $\alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1$ $\alpha < 1$ 02. Which of the following is true (a) Common base transistor is commonly used because current gain is maximum (b) Common emitter is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor 03. If $\alpha = 0.98$ and current through emitter $i_e = 20$ mA, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 04. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_e} = 0.98$ then maximum current gain in common emit configuration will be [CESE PMT 20] (a) 12 (b) 24 (c) 6 (d) 5 15. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 20] (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 16. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then [KCET 20] (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_1 > l_1 > l_2$ 17. In an NPN transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (l_b) and base current (l_b) and $\beta = 1 mA$ (c) $l_a = 1 mA$, $l_b = 11 mA$, $l_b = 1 mA$, $l_b = 11 mA$, $l_b = 11 mA$, $l_b = 11 mA$, $l_b = 1 mA$ 17. 1		(b) Collector is posit	ive and emitter is negative w	ith respect to the base											
01. In the case of constants α and β of a transistor[CET 20](a) $\alpha = \beta$ (b) $\beta < 1$ $\alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1$ $\alpha < 1$ 02. Which of the following is true(a) Common base transistor is commonly used because current gain is maximum(b) Common emitter is commonly used because current gain is maximum(c) Common collector is commonly used because current gain is maximum(d) Common emitter is the least used transistor 03. If $\alpha = 0.98$ and current through emitter $i_e = 20$ mA, the value of β is(a) 4.9(b) 49(c) 96(d) 9.6 04. For a common base configuration of PNP transistor $\frac{l_e}{l_e} = 0.98$ then maximum current gain in common emit configuration will be(a) 12(b) 24(c) 6(d) 0.5 11. a P-N-P transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2The base current is(a) 0.4 mA(b) 0.2 mA(c) 0.29 mA(d) 0.35 mA 06. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then(a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_1 > l_1 > l_2$ 07. In an NPN transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collect the emitter current (l_2) and base current (l_3) are 1 mA , $l_8 = 1 \text{ mA}$, $l_6 = 11 \text{ mA}$, $l_8 = 1 \text{ mA}$ 08. In the study of transistor as an amplifier, if $\alpha = l_e/l_e$ and $\beta = l_e/l_b$, where l_e, l_b and l_e are the collector, la and emitter currents, then		(c) Collector is posit	ive and emitter is at same po	tential as the base											
(a) $\alpha = \beta$ (b) $\beta < 1$ $\alpha > 1$ (c) $\alpha\beta = 1$ (d) $\beta > 1$ $\alpha < 1$ 22. Which of the following is true (a) Common base transistor is commonly used because current gain is maximum (b) Common emitter is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor 33. If $\alpha = 0.98$ and current through emitter $i_e = 20$ mA, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 44. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_e} = 0.98$ then maximum current gain in common emit configuration will be CBSE PMT 20 (a) 12 (b) 24 (c) 6 (d) 5 35. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is CAFMC 20 (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 36. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 37. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector, here the emitter current (l_2) and base current (l_3) are given by CKET 20 (a) $l_e = -1 mA$, $l_B = 9 mA$ (b) $l_B = 9 mA$, $l_B = -1 mA$ (c) $l_E = 1 mA$, $l_B = 11 mA$ (d) $l_E = 11 mA$, $l_B = 1 mA$ 37. In the study of transistor as an amplifier, if $\alpha = l_c/l_e$ and $\beta = l_c/l_b$, where l_c, l_b and l_e are the collector, here the emitter currents, the 57. 57		(d) Both collector an	d emitter are negative with r	espect to the base											
o2. Which of the following is true (a) Common base transistor is commonly used because current gain is maximum (b) Common emitter is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor o3. If $\alpha = 0.98$ and current through emitter $i_e = 20 \text{ mA}$, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 o4. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_E} = 0.98$ then maximum current gain in common emit configuration will be [CBSE PMT 20] (a) 12 (b) 24 (c) 6 (d) 5 o5. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 20] (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA o6. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ o7. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collect the emitter current (l_2) and base current (l_8) are given by [KCET 20] (a) $l_x = -1 mA$, $l_B = 9 mA$ (b) $l_B = 9 mA$, $l_B = -1 mA$ (c) $l_B = 1 mA$, $l_B = 11 mA$, $l_$	01.	In the case of consta	nts α and β of a transistor		[CET 2003]										
(a) Common base transistor is commonly used because current gain is maximum (b) Common emitter is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor 03. If $\alpha = 0.98$ and current through emitter $i_e = 20 \text{ mA}$, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 04. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_e} = 0.98$ then maximum current gain in common emit configuration will be 15. (CBSE PMT 20 (a) 12 (b) 24 (c) 6 (d) 5 15. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is 16. (C) 0.2 mA (c) 0.29 mA (d) 0.35 mA 16. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 17. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collect the emitter current (i_E) and base current (i_B) are given by (a) $l_e = -1 \text{ mA}, l_B = 9 \text{ mA}$ (b) $l_e = 9 \text{ mA}, l_B = -1 \text{ mA}$ (c) $l_e = 1 \text{ mA}, l_B = 11 \text{ mA}$ (d) $l_e = 11 \text{ mA}, l_B = 1 \text{ mA}$ 17. 17		(a) $\alpha = \beta$	(b) $\beta < 1 \alpha > 1$	(c) $\alpha\beta = 1$	(d) $\beta > 1 \alpha < 1$										
(b) Common emitter is commonly used because current gain is maximum (c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor 03. If $\alpha = 0.98$ and current through emitter $i_e = 20 \text{ mA}$, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 04. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_e} = 0.98$ then maximum current gain in common emit configuration will be [CBSE PMT 20 (a) 12 (b) 24 (c) 6 (d) 5 05. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 20 (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 06. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 07. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collect the emitter current (i_b) and base current (i_b) are given by [KCET 20 (a) $l_e = -1 \text{ mA}, l_b = 9 \text{ mA}$ (b) $l_e = 9 \text{ mA}, l_b = -1 \text{ mA}$ (c) $l_a = 1 \text{ mA}, l_b = 11 \text{ mA}, l_b = 1 \text{ mA}, l_b = $	02.	Which of the following	ng is true												
(c) Common collector is commonly used because current gain is maximum (d) Common emitter is the least used transistor 03. If $\alpha = 0.98$ and current through emitter $i_e = 20$ mA, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 04. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_E} = 0.98$ then maximum current gain in common emit configuration will be [CBSE PMT 20] (a) 12 (b) 24 (c) 6 (d) 5 05. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 20] (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 06. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then [KCET 20] (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 07. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (i_E) and base current (i_b) are given by [KCET 20] (a) $i_E = -1$ mA, $i_B = 9$ mA (b) $i_E = 9$ mA, $i_B = -1$ mA (c) $i_E = 1$ mA, $i_B = 11$ mA (d) $i_E = 11$ mA, $i_B = 1$ mA 08. In the study of transistor as an amplifier, if $\alpha = l_c / l_e$ and $\beta = l_c / l_b$, where l_c, l_b and l_e are the collector, la and emitter currents, then [CBSE PMT 2005; KCET 20]		(a) Common base tra	ansistor is commonly used be	cause current gain is maxin	num										
(d) Common emitter is the least used transistor 03. If $\alpha = 0.98$ and current through emitter $i_e = 20 \text{ mA}$, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 04. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_E} = 0.98$ then maximum current gain in common emit configuration will be [CBSE PMT 20] (a) 12 (b) 24 (c) 6 (d) 5 05. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 20] (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 06. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 07. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (i_E) and base current (i_B) are given by (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ 08. In the study of transistor as an amplifier, if $\alpha = l_c/l_e$ and $\beta = l_c/l_b$, where l_c, l_b and l_e are the collector, l_a and emitter currents, then [CBSE PMT 2000; KCET 20]															
o3. If $\alpha = 0.98$ and current through emitter $i_e = 20$ mA, the value of β is (a) 4.9 (b) 49 (c) 96 (d) 9.6 o4. For a common base configuration of <i>PNP</i> transistor $\frac{l_C}{l_E} = 0.98$ then maximum current gain in common emit configuration will be [CBSE PMT 20 (a) 12 (b) 24 (c) 6 (d) 5 o5. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 20 (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA o6. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ o7. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (i_B) are given by (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$, $i_B = 1 mA$, $i_B = 1 mA$, $i_B = 10 mA$, $i_B $		(c) Common collecto	or is commonly used because of	current gain is maximum											
(a) 4.9 (b) 49 (c) 96 (d) 9.6 64. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_E} = 0.98$ then maximum current gain in common emiter configuration will be (a) 12 (b) 24 (c) 6 (d) 5 65. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 66. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then [KCET 26] (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 67. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector difference in the emitter current (i_E) and base current (i_E) are given by (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$, $i_B = 1 mA$, $i_B =$		(d) Common emitter	is the least used transistor												
04. For a common base configuration of <i>PNP</i> transistor $\frac{l_c}{l_E} = 0.98$ then maximum current gain in common emit configuration will be [CBSE PMT 26] (a) 12 (b) 24 (c) 6 (d) 5 05. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is [AFMC 26] (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA 06. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 07. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collect the emitter current (i_E) and base current (i_B) are given by (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$	03.	If α = 0.98 and curre	nt through emitter $i_e = 20 m_e$	A, the value of β is											
configuration will be [CBSE PMT 26] (a) 12 (b) 24 (c) 6 (d) 5 of. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (a) $i_E = 0 mA$, $i_B = 0 mA$, i		(a) 4.9	(b) 49	(c) 96	(d) 9.6										
(a) 12 (b) 24 (c) 6 (d) 5 (a) 12 (b) 24 (c) 6 (d) 5 5. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is (AFMC 20 (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (c) 0.29 mA (d) 0.35 mA (c) 1 ₁ l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then [KCET 20 (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $l_2 = -1 mA$, $l_B = 9 mA$ (b) $l_E = 9 mA$, $l_B = -1 mA$ (c) $l_E = 1 mA$, $l_B = 11 mA$ (d) $l_E = 11 mA$, $l_B = 1 mA$ (a) $l_1 = l_2 = l_3 mA$ (b) $l_2 = 9 mA$, $l_2 = -1 mA$ (c) $l_2 = 1 mA$, $l_3 = 11 mA$ (d) $l_4 = 11 mA$, $l_6 = 1 mA$ (a) $l_1 = -1 mA$, $l_2 = 9 mA$ (b) $l_2 = 9 mA$, $l_2 = -1 mA$ (c) $l_2 = 1 mA$, $l_3 = 11 mA$ (d) $l_4 = 11 mA$, $l_6 = 1 mA$ (a) $l_4 = 11 mA$, $l_6 = 10 mA$, $l_6 = 1 mA$, $l_6 = 10 mA$, $l_6 = 10 mA$, $l_8 = 10 mA$ (b) $l_4 = l_2 - 1 mA$, $l_5 = 10 mA$, $l_6 = 10 mA$, $l_8 = 10 mA$,	04.	For a common base	configuration of PNP transis	tor $\frac{l_C}{l_E} = 0.98$ then maximum	m current gain in common emitter										
(a) 12 (b) 24 (c) 6 (d) 5 of. In a <i>P-N-P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is (AFMC 20) (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (d) 0.35 mA (e) 0.2 mA (c) 0.29 mA (d) 0.35 mA (f) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (a) $i_E = -1 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (f) $i_E = 11 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (f) $i_E = 11 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (g) $i_E = 1 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (g) $i_E = 1 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (c) $i_E = 11 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (g) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ (g) $i_E = 1 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 1 mA$ (c) $i_E = 11 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (g) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (c) $i_E = 1 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 11 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$ (h) $i_E = 10 mA$, $i_B = 1 mA$, $i_B = 1 mA$		configuration will be			[CRSE DMT 2002]										
o5. In a <i>P</i> - <i>N</i> - <i>P</i> transistor working as a common-base amplifier, current gain is 0.96 and emitter current is 7.2 The base current is CAFMC 20 (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (d) 0.35 mA (excer 20) (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (excer 20) (f) In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (i_E) and base current (i_B) are given by (f) $i_E = -1 mA$, $i_B = 9 mA$ (f) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$,		(2) 12	(h) 24	(c) 6											
The base current is [AFMC 20] (a) 0.4 mA (b) 0.2 mA (c) 0.29 mA (d) 0.35 mA (d) 0.35 mA (e) 0.2 mA (f) 0.29 mA (f) 0.35 mA (f) l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then [KCET 20] (a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ (c) $l_4 < l_2$ (f) $l_5 = l_1 > l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 > l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 > l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 > l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 > l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 > l_2$ (c) $l_6 < l_1 < l_2$ (c) $l_6 < l_1 > l_2$ (c) $l_6 = 1 mA, i_8 = 11 mA$ (c) $l_6 = 11 mA, i_8 = 11 mA$, $l_8 = 11 mA, i_8 = 1 mA$ (c) $l_6 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_6 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_6 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_6 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_6 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_6 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_8 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_8 = l_1 mA, i_8 = 11 mA, i_8 = 1 mA$ (c) $l_8 = l_1 mA, i_8 = 11 mA$ (c) $l_8 = l_1 mA, i_8 = 10 mA$ (c) $l_8 = l_1 mA$ (c) $l_8 = $	05.														
(a) $0.4 \ mA$ (b) $0.2 \ mA$ (c) $0.29 \ mA$ (d) $0.35 \ mA$ o6. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then[KCET 20](a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ o7. In an NPN transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (i_E) and base current (i_B) are given by[KCET 20](a) $i_E = -1 \ mA, \ i_B = 9 \ mA$ (b) $i_E = 9 \ mA, \ i_B = -1 \ mA$ (c) $i_E = 1 \ mA, \ i_B = 11 \ mA$ (d) $i_E = 11 \ mA, \ i_B = 1 \ mA$ o8. In the study of transistor as an amplifier, if $\alpha = I_c / I_e$ and $\beta = I_c / I_b$, where I_c, I_b and I_e are the collector, he and emitter currents, then[CBSE PMT 2000; KCET 20]	- 51			amp											
06. If l_1, l_2, l_3 are the lengths of the emitter, base and collector of a transistor then[KCET 20](a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 07. In an NPN transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (i_E) and base current (i_B) are given by[KCET 20](a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ 08. In the study of transistor as an amplifier, if $\alpha = I_c / I_e$ and $\beta = I_c / I_b$, where I_c, I_b and I_e are the collector, he and emitter currents, then[CBSE PMT 2000; KCET 20]					[AFMC 2002]										
(a) $l_1 = l_2 = l_3$ (b) $l_3 < l_2 > l_1$ (c) $l_3 < l_1 < l_2$ (d) $l_3 > l_1 > l_2$ 07. In an <i>NPN</i> transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector the emitter current (i_E) and base current (i_B) are given by [KCET 20 (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ 08. In the study of transistor as an amplifier, if $\alpha = I_c / I_e$ and $\beta = I_c / I_b$, where I_c , I_b and I_e are the collector, he and emitter currents, then [CBSE PMT 2000; KCET 20]		(a) 0.4 <i>mA</i>	(b) 0.2 <i>mA</i>	(c) 0.29 <i>mA</i>	(d) 0.35 <i>mA</i>										
07. In an <i>NPN</i> transistor circuit, the collector current is 10 <i>mA</i> . If 90% of the electrons emitted reach the collector the emitter current (i_E) and base current (i_B) are given by [KCET 20] (a) $i_E = -1 mA$, $i_B = 9 mA$ (b) $i_E = 9 mA$, $i_B = -1 mA$ (c) $i_E = 1 mA$, $i_B = 11 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$ 08. In the study of transistor as an amplifier, if $\alpha = I_c / I_e$ and $\beta = I_c / I_b$, where I_c , I_b and I_e are the collector, he and emitter currents, then [CBSE PMT 2000; KCET 20]	06 .	If l_1, l_2, l_3 are the leng	ths of the emitter, base and c	collector of a transistor ther	1 [KCET 2002]										
the emitter current (i_E) and base current (i_B) are given by [KCET 20 (a) $i_E = -1 \ mA$, $i_B = 9 \ mA$ (b) $i_E = 9 \ mA$, $i_B = -1 \ mA$ (c) $i_E = 1 \ mA$, $i_B = 11 \ mA$ (d) $i_E = 11 \ mA$, $i_B = 1 \ mA$ o8. In the study of transistor as an amplifier, if $\alpha = I_c / I_e$ and $\beta = I_c / I_b$, where I_c , I_b and I_e are the collector, he and emitter currents, then [CBSE PMT 2000; KCET 20]		(a) $l_1 = l_2 = l_3$	(b) $l_3 < l_2 > l_1$	(c) $l_3 < l_1 < l_2$	(d) $l_3 > l_1 > l_2$										
o8. In the study of transistor as an amplifier, if $\alpha = I_c / I_e$ and $\beta = I_c / I_b$, where I_c, I_b and I_e are the collector, I and emitter currents, then [CBSE PMT 2000; KCET 20]	07.				ectrons emitted reach the collector [KCET 2001]										
and emitter currents, then [CBSE PMT 2000; KCET 20		(a) $i_E = -1 mA$, $i_B = 9$) mA (b) $i_E = 9 mA$, $i_B = -1$	mA (c) $i_E = 1 mA$, $i_B = 11$	$1 mA$ (d) $i_E = 11 mA$, $i_B = 1 mA$										
	08	In the study of transistor as an amplifier, if $\alpha = I_c / I_e$ and $\beta = I_c / I_b$, where I_c, I_b and I_e are the collector,													
$(\alpha) = \alpha + 1 - \alpha$ $(\beta) = \alpha + \alpha$ $(\beta) = \alpha + \alpha$	00.	and emitter currents	, then		[CBSE PMT 2000; KCET 2000]										
(a) $\beta = \underline{\qquad}$ (b) $\beta = \underline{\qquad}$ (c) $\beta = \underline{\qquad}$ (d) $\beta = \underline{\qquad}$	00.		α. Ω	α	$1 + \alpha$										

r www.studentbro.in

Regional www.studentbro.in

	In a common emitte change in base curre	ent is 250 μA		
	(a) 80 × 250 μA	(b) (250 - 80) μA	(c) (250 + 80) μA	(d) 250/80 µA
210.	Least doped region in	n a transistor		
	(a) Either emitter or	collector (b)	Base	(c) Emitter (d)
211.	-	ide good power amplification v	vhen they are used in	
	(a) Common collecto configuration	or configuration	(b)	Common emitter
	(c) Common base co	nfiguration	(d)	None of these
212.		a transistor is 50. The input r 2. The peak value for an A.C inp		when used in the common-emitters [CBSE PMT 1998]
	(a) 100 µA	(b) 0.01 <i>mA</i>	(c) 0.25 <i>mA</i>	(d) 500 µA
213.	For a transistor the p	parameter β = 99. The value of	the parameter α is	
	(a) 0.9	(b) 0.99	(c) 1	(d) 9
214.		n common emitter mode as an	amplifier. Then	
		junction is forward biased		
		junction is reverse biased		
		is connected in series with the	• • • •	•
		is connected in series with the	• • • •	e base collector junction
215.		ne transistor symbol always po		
	(a) Hole flow in the emitter region	emitter region	(b)	Electron flow in the
		flow in the emitter region	•	flow in the emitter region
216.		he base is the <i>N</i> -region. Its wic		
	(a) Smaller	(b) Larger	(c) Same	(d) Not related
217.	A common emitter a is 10 $K\Omega$. The voltage			input impedance is 1 $K\Omega$ and load
	is 10 <i>K</i> Ω. The voltage (a) 9.9	e gain will be (b) 99	transistor (α = 0.99). The (c) 990	input impedance is 1 $K\Omega$ and load (d) 9900
	is 10 $K\Omega$. The voltage	e gain will be (b) 99		input impedance is 1 $K\Omega$ and load
	is 10 <i>K</i> Ω. The voltage (a) 9.9	e gain will be (b) 99		input impedance is 1 $K\Omega$ and load (d) 9900
	is 10 <i>K</i> Ω. The voltage (a) 9.9 The symbol given in	e gain will be (b) 99		input impedance is 1 $K\Omega$ and load (d) 9900
	is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) <i>NPN</i> transistor	e gain will be (b) 99 figure represents		input impedance is 1 $K\Omega$ and load (d) 9900
	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) <i>NPN</i> transistor (b) <i>PNP</i> transistor 	e gain will be (b) 99 figure represents PN junction diode		input impedance is 1 $K\Omega$ and load (d) 9900
218.	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) <i>NPN</i> transistor (b) <i>PNP</i> transistor (c) Forward biased <i>N</i> (d) Reverse biased <i>N</i> 	e gain will be (b) 99 figure represents PN junction diode	(c) 990	input impedance is 1 $K\Omega$ and load (d) 9900
217. 218. 219.	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) <i>NPN</i> transistor (b) <i>PNP</i> transistor (c) Forward biased <i>N</i> (d) Reverse biased <i>N</i> 	e gain will be (b) 99 figure represents PN junction diode IP junction diode	(c) 990	input impedance is 1 $K\Omega$ and load (d) 9900
218. 219.	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) NPN transistor (b) PNP transistor (c) Forward biased N (d) Reverse biased N The most commonly (a) Copper 	e gain will be (b) 99 figure represents PN junction diode IP junction diode used material for making trans (b) Silicon	 (c) 990 <i>E</i> <i>E</i><td>input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96]</td>	input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96]
218. 219.	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) NPN transistor (b) PNP transistor (c) Forward biased N (d) Reverse biased N The most commonly (a) Copper 	e gain will be (b) 99 figure represents PN junction diode IP junction diode used material for making trans	 (c) 990 <i>E</i> <i>E</i><td>input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96</td>	input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96
218. 219.	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) NPN transistor (b) PNP transistor (c) Forward biased N (d) Reverse biased N The most commonly (a) Copper 	e gain will be (b) 99 figure represents PN junction diode IP junction diode used material for making trans (b) Silicon rcuit is arranged as shown in f	 (c) 990 <i>E</i> <i>E</i><td>input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96] (d) Silver</td>	input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96] (d) Silver
218. 219.	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) NPN transistor (b) PNP transistor (c) Forward biased N (d) Reverse biased N The most commonly (a) Copper An NPN-transistor ci (a) A common base a 	e gain will be (b) 99 figure represents PN junction diode UP junction diode used material for making trans (b) Silicon rcuit is arranged as shown in f	(c) 990 E sistor is (c) Ebonite Figure. It is	input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96]
218. 219.	 is 10 KΩ. The voltage (a) 9.9 The symbol given in (a) NPN transistor (b) PNP transistor (c) Forward biased N (d) Reverse biased N The most commonly (a) Copper An NPN-transistor ci 	e gain will be (b) 99 figure represents PN junction diode IP junction diode used material for making trans (b) Silicon rcuit is arranged as shown in f amplifier circuit er amplifier circuit	 (c) 990 <i>E</i> <i>E</i><td>input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96] (d) Silver</td>	input impedance is 1 $K\Omega$ and load (d) 9900 [AMU 1995, 96] (d) Silver

221. In the circuit here, the transistor used has a current gain β = 100. Value of R_B so that V_{CE} = 5V (neglect V_{BE}) is [CBSE 1994] 10V(a) $200 \times 10^3 \Omega$ 1kOC (b) $10^6 \Omega$ (c) 500 Ω (d) $2 \times 10^3 \Omega$ **222.** The part of a transistor which is heavily doped to produce a large number of majority carriers, is (b) Emitter (c) Collector (a) Base (d) None of these 223. In an NPN-transistor circuit the collector current is 10mA. If 90% of the electrons are able to reach the collector [IIT-JEE 1992] (a) The emitter current will be 9 mA (b) The emitter current will be 11 mA (c) The base current will be 1mA(d) The base current will be 0.1 *mA* 224. For a transistor, the current amplification factor is 0.8. The transistor is connected in common emitter configuration. The change in the collector current when the base current changes by 6 mA is (a) 6 *mA* (b) 4.8 mA (c) 24 mA (d) 8 mA **225.** In a common base amplifier the phase difference between the input signal voltage and the output voltage is **[CBSE PMT**] (a) 0 (b) $\pi/4$ (c) $\pi/2$ (d) π **226.** In case of *NPN*-transistors the collector current is always less than the emitter current because (a) Collector side is reverse biased and emitter side is forward biased (b) After electrons are lost in the base and only remaining ones reach the collector (c) Collector side is forward biased and emitter side is reverse biased (d) Collector being reverse biased attracts less electrons **227.** In a transistor circuit shown here the base current is 35 μ A. The value of the resistor R_b is (a) 123.5 kΩ R_L R (b) 257 kΩ -| | | + (c) 380.05 kΩ 9V(d) None of these **228.** The input resistance of a CE amplifier is 3 Ω and load resistance is 24 Ω . If β = 0.6, then the voltage gain of the amplifier is (c) 3.6 (a) 1.2 (b) 2.4 (d) 4.8 **229.** The box in figure represents an amplifier with an input resistance $R_i = 100 \Omega$. It is connected to an ac voltage source through a resistance $R = 300 \Omega$. The voltage gain of the transistor is 400. If the peak-to-peak voltage of the input ac source is 5.0 V, The peak-to-peak voltage of the Amplifier (a) 500 V \leq_{R_i} (b) 400 V V_0

Get More Learning Materials Here : 📕

CLICK HERE

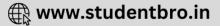
r www.studentbro.in

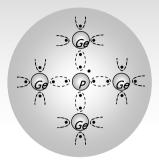
(c) 300 V

(d) 200 V

230. In a transistor, a change of 8.0 *mA* in the emitter current produces a change of 7.8 *mA* in the collector current. What change in the base current is necessary to produce the same change in the collector current

(a) $50 \ \mu A$ (b) $100 \ \mu A$ (c) $150 \ \mu A$ (d) $200 \ \mu A$


231. An *NPN* transistor is connected in common emitter configuration. Load resistance is 1000 Ω and voltage drop across it is 1*V*. The current amplification factor is 5/4. If internal resistance of transistor is 200 Ω . Its voltage gain and base current (in *amp*) respectively are


(a) $6.25, 8 \times 10^{-4}$ (b) $3.25, 8 \times 10^{-4}$ (c) $4.25, 8 \times 10^{-3}$ (d) $5.25, 8 \times 10^{-3}$

232. A transistor is used as a common emitter amplifier. The load resistance connected to the circuit is 2 *kilo-ohm*. Its current gain β = 50, and input resistance R_I = 0.5 *kilo-ohm*. If input current is changed by 50 μ A, then the change in output voltage will be

(a) 2 V (b) 2.5 V (c) 5 V (d) 5.5 V

${\cal A}$ nswer Sheet

									Assiqı	nment.	s								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	а	b	а	с	а	d	d	d	d	b	d	а	b	а	с	а	d	d	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	b	d	а	d	с	d	с	b	а	b	b	с	с	с	b	d	d	а	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	b	b	с	с	а	b	а	а	с	с	с	с	а	d	с	а	d	а	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
а	d	b	b	b	с	с	d	b	d	d	а	b	а	с	b	с	с	d	d
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	d	с	d	а	b	с	b	b	с	а	с	с	d	а	а	а	d	а	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	b	b	а	d	d	d	b	а	d	а	с	b	с	а	с	с	а	d	с
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	d	b	b	d	b	b	d	b, c	а	b	а	b	b	b	с	d	а	а	d
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	d	b	а	с	b	с	с	а	а	с	d	а	d	b	d	а	b	с	с
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
с	b	d	d	с	а	с	d	b	b	с	а	а	с	с	b	b	с	а	с
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	b	с	b	с	с	b	d	а	а	b	с	b	с	а	с	а	d	d	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220

Get More Learning Materials Here :



r www.studentbro.in

Solid and Semiconductor 169

d	b	b	b	с	d	d	b	а	b	b	d	b	с	а	а	с	а	b	b
221	222	223	224	225	226	227	228	229	230	231	232								
а	b	b, c	b	а	b	b	d	а	d	а	с								

